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Abstract
Aiming to address the challenge of inaccurately describing the curve boundary of the complex design domain in traditional
finite element mesh, this paper proposes an improved polygon mesh generation and polygon scaled boundary finite element
method (PSBFEM) using non-uniform rational B-spline (NURBS) boundary. In the improved mesh generation scheme, the
domain boundary will be accurately described using NURBS curves. Within this framework, a NURBS updating strategy
is proposed, allowing the NURBS curve information on the boundary to be updated as the mesh changes. By employing
point inversion and knot insertion, additional control points are introduced to ensure that some coincide with the nodes of the
elements, thereby guaranteeing the accuracy of subsequent analyses. The boundary elements can be discretized into NURBS
elements and conventional elements using SBFEM, whose physical fields are respectively constructed using NURBS basis
functions and Lagrange shape functions in the circumferential direction. In the radial direction, by transforming a system
of partial differential equations into a system of ordinary differential equations, which can be analytically solved without
fundamental solutions. Furthermore, the internal elements can be solved directly with the traditional polygon SBFEM. The
numerical examples demonstrate that the proposed method can achieve a high-quality polygon mesh with NURBS updating.
Moreover, it effectively solves the correspondingpolygon elements and significantly improves the accuracyof the displacement
and stress solutions compared to the traditional polygon SBFEM.

Keywords NURBS boundary · Polygon mesh · SBFEM · Complex design domain

1 Introduction

The finite element method (FEM), as a crucial approach for
solving partial differential equations, finds extensive applica-
tion in numerical simulations across engineering and various
other fields. However, the conventional employment of trian-
gular and quadrilateral elements in the finite element method
often poses challenges when describing complex models’
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boundaries. Conversely, employing complex polygon ele-
ments offers evident advantages [1], such as greater flexibility
for the meshing of complex geometries, and more effec-
tive simulation of mechanical properties. Common polygon
meshes are usually generated by Delaunay triangulation [2,
3] or Voronoi diagrams [4, 5]. The primary challenge in uti-
lizing polygon elements within the FEM lies in constructing
polynomial interpolation functions of physical fields that sat-
isfies the coordination of elements [6].Various solutions have
been proposed to address this issue, including Wachspress
interpolation [7, 8], Laplace interpolation [9, 10], and mean
value coordinates [11, 12].

Wolf and Song [13] pioneered a semi-analytical and
semi-numerical method for solving partial differential equa-
tions, known as the scaled boundary finite element method
(SBFEM). This method can realize the boundary discretiza-
tion and combines the advantages of FEM and boundary
element method (BEM), exhibiting characteristics such as
reduced computational dimension and elimination of the
need for fundamental solutions, thereby enabling efficient
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and accurate numerical computations. The application of
SBFEM was subsequently extended by Ooi et al. [14] to
encompass polygons with any number of sides, thereby
significantly enhancing the accuracy and efficiency of the
solution. Geometric shapes only needs to satisfy the scal-
ing conditions required by SBFEM [15], a criterion that
makes SBFEM an ideal platform for developing polygon-
based shape functions. Furthermore, polygon meshes can be
conveniently constructed as dualmeshes of triangularmeshes
[16], facilitating their extensive utilization in the SBFEMand
rendering it comparable to the traditional FEM in terms of
applicability. The Polygon SBFEM (PSBFEM) was initially
used to solve fracture problems [17, 18]. Due to its shape
function containing singular terms, which can be directly
obtained in the solving process of SBFEM elements [19], the
SBFEM can simplify the solution of singular problems and
enhance calculation accuracy. In addition, PSBFEMhas been
successfully applied into various fields including Elasto-
plasticity [20], Vibration Analysis [21], Seepage Problems
[22], Dynamic analyses [23]. Although the development of
PSBFEM has significantly enhanced solution efficiency and
accuracy, it still falls short in accurately describing the bound-
ary of complex design domains.

The emergence of isogeometric analysis (IGA) [24] offers
an alternative approach for solution of accurate geometry. In
contrast to the Lagrange basis function employed in tradi-
tional FEM, IGA direct uses exact geometric spline basis
functions in analysis, e.g., NURBS [25], hybrid B-splines
[26], T-splines [27] and PHT splines [28], which achieves
high continuity between elements. As a widely-used tech-
nique for representing curves, NURBS can be constructed
through B-splines. A knot vector of B-splines, denoted by Ξ

� [η0, η1,…,ηn+p], consists of a non-decreasing real number
sequence in the parameter space, where n is the number of
control points, p represents the order of the spline. The basis
function Ni,p(η) of B-spline can be defined by Cox-de Boor
recursion formula [29] as

Ni , 0(η) �
{
1, if ηi ≤ η < ηi+1

0, Otherwise

Ni , p(η) � (η − ηi )Ni , p−1(η)

ηi+p − ηi

+
(ηi+p+1 − η)Ni+1, p−1(η)

ηi+p+1 − ηi+1

if ηi ≤ η < ηi+1

(1)

By introducing a positive weight ω, the NURBS basis
function can be rationalized by B-splines as

Ri , p(η) � Ni , p(η)ωi∑n
j N j , p(η)ω j

(2)

The corresponding NURBS curve can be expressed as

S(η) �
n∑

i�0

Ri , p(η)P i (3)

where P represents the control points of the NURBS curve.
In recent years, the combination of IGA and SBFEM has
received great deal of attentions by numerous researchers
to further enhance calculation accuracy. Zhang and Lin
[30, 31] firstly proposed a scaled boundary isogeometric
analysis (SBIGA), which employed NURBS for describ-
ing the boundary of SBFEM, to achieve accurate solution.
Gravenkamp et al. [32] extensively revisited the utilization
of higher-order shape functions such as NURBS in SBFEM.
Zang et al. [33, 34] proposed a NURBS-Enhanced PSBFEM
to solve heat diffusion and developed a polygonal scaled
boundary isogeometric method for 2D elasticity problems
involving trimmed geometries. References [35–38] further
discussed the application of NURBS-based SBFEM in prac-
tical problems. A majority of these studies, however, heavily
rely on manual NURBS patches settings or initial NURBS
information such as specifying initial control points to coin-
cide with element nodes. Undoubtedly, this will lead to
challenges in dealing with complex design domain issues.
Recently, aNURBS-boundary-based SBFEM [39] have been
proposed under the quadtree framework, which employ the
NURBS to describe domain’s boundary for subsequent anal-
ysis. The adoption of quadtree meshes greatly enhances
computational efficiency, but there is still room for improve-
ment in terms of solution accuracy.

Klinkel et al. [40] proposed a NURBS-based hybrid
collocation-Galerkin method for 2D plane-stress elas-
tic problems, which effectively combines the advantages
of SBFEM and isogeometric collocation methods. Later,
Klinkel and Reichel [41] presented a finite element formula-
tion in boundary representation for the analysis of nonlinear
problems bymeans of scaling approach, then they [42] devel-
oped NURBS-enhanced finite element formulations based
on scaled boundary parameterization within polygon mesh
framework. These methods introduce the boundary scaling
technique adopted from SBFEM, combined with the concept
of isogeometric analysis, greatly enhancing the accuracy of
the solution. In comparison to the aforementioned method,
this study proposes an improved NURBS-based polygon
mesh generation scheme that NURBS information can be
updated along with the changes in the polygon mesh. Under
the initialNURBS, the knot vector corresponding to the inter-
section points of the boundary curves and polygon meshes
is obtained through point inversion, followed by knot inser-
tion to achieve updating of NURBS. This ensures that the
control points of NURBS fall precisely at the intersection
positions, facilitating subsequent accurate solutions. Addi-
tionally, we propose a NURBS-boundary-based polygon
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scaled boundary finite element method (NPSBFEM) tailored
for the improved polygon mesh. This method effectively
integrates the advantages of PSBFEM and SBIGA, with the
core still rooted in SBFEM. For the internal elements in the
problem domain, direct calculations will be performed using
PSBFEM. The focus lies on the elements along the bound-
aries. By employing the dimension reduction capability of
SBFEM, boundary meshes will be discretized into NURBS
curve elements and Lagrange line elements. For NURBS
curve elements, the SBIGA will be utilized to obtain their
coefficient matrices. Simultaneously, for Lagrange line ele-
ments, the approach of PSBFEM will be applied to acquire
their coefficient matrices. Subsequently, coefficient matrices
will be assembled to solve the scaled boundary finite element
equations.

The remaining sections of this paper are outlined as fol-
lows: Sect. 2 introduces the generation process of novel
polygonmesh. Section 3 presents theNURBS updating strat-
egy to precisely impose control points. Section 4 elaborates
on the implementation process of NPSBFEM. Numerical
examples are presented in Sect. 5 to demonstrate the effec-
tiveness of the proposedmesh andmethod. Finally, in Sect. 6,
brief conclusions are provided highlighting the key points
discussed in this paper.

2 Polygonmesh generation of NURBS
boundary description

The present work proposes a novel scheme for generat-
ing polygon meshes using spline boundary description and
Delaunay triangulation. Distmesh [43], a simple mesh gen-
erator in MATLAB, is utilized to generate unstructured
triangular meshes. However, this mesh fails to accurately
represent the design domain’s boundary, leading to inevitable
solution errors. Moreover, an excessive number of triangular
meshes increases the degree of freedom and subsequently
escalates computational costs. To address these issues, trans-
forming the triangular meshes into a polygon mesh [14]
provides a viable solution that not only accommodates com-
plex design domains but also simplifies the problem-solving
process. Nevertheless, constructing boundary meshes by
connecting midpoint boundaries weakens solution accu-
racy. In contrast, employing NURBS to describe the design
domain’s boundary enables us to overcome these aforemen-
tioned challenges.

CAD software can be utilized in the structural design
domain to acquireNURBS information of the domain bound-
ary, including control points, knot vector, and weights. This
information is then combined with polygon mesh generation
to construct a mesh generation scheme using spline descrip-
tion, as depicted in Fig. 1.

The specific steps for implementation are as follows.

Step 1: Utilizing Rhino software to acquire the control points
and other pertinent information of the design domain bound-
ary.
Step 2: Triangulating the design domain to obtain essential
data such as vertex, centroid, and boundary midpoint infor-
mation for each triangulation element.
Step 3: Combining the initial NURBS information with the
boundary midpoint of the external triangular element to
update the spline curve. Refer to Sect. 3 for detailed instruc-
tions.
Step 4: Constructing a polygon mesh by connecting trian-
gle centroids for inner elements, while outer elements are
initially formed by connecting centroids, vertices, and mid-
points of boundary triangles.
Step 5: Substituting boundaries of external elements obtained
in step 4 with NURBS curves acquired in Step 3 to create
the desired polygon mesh. It should be noted that control
points of updatedNURBScurves can coincidewith boundary
nodes of external elements for ease in subsequent accurate
solutions.

3 NURBS updating scheme of polygonmesh

In this section, a NURBS updating scheme is proposed to
meet the subsequent solution requirements of the polygon
mesh. The core of this scheme lies in the utilization of
point inversion and knot insertion techniques to obtain new
NURBS information, ensuring that boundary nodes have
corresponding control points to fulfill the boundary dis-
cretization requirements of SBFEM.

3.1 Polygon scaled boundary element

For a design domain with complex boundaries, Fig. 2a
demonstrates the representation of traditional PSBFEMwith
linear connection at the nodes, which inevitably affects the
accuracy of solution. As mentioned in Sect. 2, NURBS
boundary is employed to accurately describe the design
domain boundary in this work. The schematic diagram of
quadratic SBFEM polygon mesh using NURBS boundaries
is depicted in Fig. 2b, where the polygon elements in two
dimensions based on SBFEM are termed S-elements [16].
Within each S-element, a local coordinate system (ξ , η) is
established at a point known as the scaling center O from
which the entire boundary is visible. Herein, η represents the
tangential coordinates and can be utilized for constructing
the NURBS parameter space, and ξ denotes the radial coor-
dinates. Specifically, ξ equals 0 at the scaling center and 1 at
the element boundary.
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Fig. 1 Polygon mesh generation scheme of spline boundary description based on Delaunay triangulation
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Fig. 2 Polygon scaled boundary element, a linear element, b quadratic element with NURBS boundary, c boundary element

3.2 Strategy for NURBS updating

Notably, when dealing with complex design domain struc-
ture, it often becomes challenging to precisely impose control
points. For polygon elements with NURBS boundaries, let’s
take the boundary element shown in Fig. 2c of this paper as
an example. When the control points are not on the boundary
and do not coincide with the element nodes, the necessary
condition for boundary discretization, i.e., continuity of dis-
placement at the endnodeswhere the elements are connected,
cannot be met. Consequently, it fails to meet the neces-
sary condition for boundary discretization, thus rendering it
unsuitable for subsequent computation using SBFEM. Based
on this observation, we propose a NURBS updating strat-
egy to precisely impose control points. By employing point
inversion and knot insertion techniques, we determine the
parameter values corresponding to the boundary nodes from
given initial NURBS information and achieve accurate impo-
sition of control points.

The determination of the parameter value η corresponding
to the boundary node coordinatePins � (x, y, z) (i.e. S(η) �
Pins) is referred to as the point inversion. The process can be
divided into three steps. Firstly, by leveraging the strong con-
vex hull property of NURBS, we can determine the spans of
curve S(η) that may encompass node Pins. Then, through
the utilization of knot refinement or insertion techniques,
these identified spans are transformed into power basis form.
Finally, for each span, a set of three polynomial equations
with unknown parameters is established, and if these equa-
tions possess a common solution, it indicates that Pins lies on
the curve.

Assuming a span c(η) � aω
0 +a

ω
1 η+aω

2 η2 of NURBS
can be represented as a vector function, where aω

i �
(ωi xi , ωi yi , ωi zi , ωi ). By projecting this span into three-
dimensional space and equating it to Pins, the following
equation is obtained

⎧⎪⎪⎨
⎪⎪⎩

ω2x2η2+ω1x1η+ω0x0
ω2η2+ω1η+ω0

� x
ω2 y2η2+ω1y1η+ω0 y0

ω2η2+ω1η+ω0
� y

ω2z2η2+ω1z1η+ω0z0
ω2η2+ω1η+ω0

� z

(4)

which yields

⎧⎪⎨
⎪⎩

ω2(x2 − x)η2 + ω1(x1 − x)η + ω0(x0 − x) � 0
ω2(y2 − y)η2 + ω1(y1 − y)η + ω0(y0 − y) � 0
ω2(z2 − z)η2 + ω1(z1 − z)η + ω0(z0 − z) � 0

(5)

The main focus of this paper is exclusively on the 2D sce-
nario, assuming z� 0. Additionally, we elegantly employ the
Newton iteration method to minimize the distance between
the node Pins and the NURBS curve S(η).

Given an initial value η0, the dot product is defined as

f (η) � S′(η)(S(η) − P ins) (6)

when f (η) � 0, the distance from the point Pins to S(η) is
minimized. The point is deemed to lie on the curve if the
minimum distance falls below a pre-specified precision. Let
ηi denotes the parameter value obtained in the i-th iteration.

ηi+1 � ηi − f (ηi )

f ′(ηi )
� ηi − S′(ηi )(S(ηi ) − P ins)

S′′(ηi )(S(ηi ) − P ins) +
∣∣S′(ηi )

∣∣2 (7)

The convergence can be indicated by employing two zero
tolerances, and the criteria for convergence are as follows

∣∣(ηi+1 − ηi )S′(η)
∣∣ ≤ χ1

|S(η) − P ins| ≤ χ1∣∣S′(η)(S(η) − P ins)
∣∣∣∣S′(η)

∣∣|S(η) − P ins| ≤ χ2

(8)
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Fig. 3 Quadratic SBFEM polygon meshes using NURBS boundaries
after knot insertion

where, χ1 and χ2 respectively represent whether the mea-
sures of Euclidean distance and cosine distance are equal to
0.

Subsequently, it is necessary to incorporate parameter
value η into the existing knot vector Ξ to construct a new
knot vector Ξ � [η0 � η0, · · · , ηk � ηk , ηk+1 � η]. The
updated NURBS curve is represented as

S(η) �
n+1∑
i�0

Ri , p(η)Qi (9)

where Ri , p represents the new basis function on the knot
vector Ξ ,Qi denotes the new control point, which is defined
as

(10)

Qi � αi P i + (1 − αi )P i−1, αi

�

⎧⎪⎨
⎪⎩

1, i ≤ k − p
η−ηi

ηi+p−ηi
, k − p + 1 ≤ i ≤ k

0, i ≥ k + 1

Notably that when a node on the boundary connects two
elements, knot insertion will be performed twice at this
specific location. Consequently, duplicate knots will occur,
resulting in the control points being imposed precisely on
the boundary nodes. Figure 3 displays the quadratic SBFEM
polygon mesh using NURBS boundaries after knot inser-
tion. It can be observed that the control points are accurately
imposed onto the elements for subsequent accurate solution.

4 NURBS-boundary-based polygon SBFEM

4.1 Elastostatic problem

This work focuses on the elastostatic problem, which is
a typical boundary value problem in mechanics analysis.

It is described by three governing equations: the equilib-
rium equation, strain–displacement equation, and constitu-
tive equation

LTσ+ f� 0 (11)

σ�Dε (12)

ε�Lu (13)

where L represents differential operator, σ is stress vector, f
is volume force vector. D represents the elastic matrix and u
is the displacement vector. And two sets of boundary condi-
tions: displacement boundary condition and force boundary
condition.

4.2 Solution of boundary polygon element stiffness
matrix

The fundamental principles and coordinate transformations
of SBFEM have been extensively discussed by Wolf and
Song [44, 45], while this section provides only a concise
overview. For a design domain with complex boundaries,
NURBS can be employed to discretize the domain boundary.
Furthermore, the boundary element of polygon mesh using
NURBS boundaries can be regarded as an S-element. Within
the framework of PSBFEM, S-elements are discretized into
NURBS element and quadratic elements, as depicted in
Fig. 4. The only requirement for boundary discretization is
to ensure displacement continuity at the connecting node
of each element, this condition can be effectively met by
NURBS updating strategy mentioned in Sect. 3.2.

The domain boundary is discretized by NURBS, and the
boundary elements are further divided intoNURBS elements
and quadratic elements. The former utilizes NURBS basis
functions for coordinate transformation, thereby converting
the Cartesian coordinates of the control points to scaled
boundary coordinates.

x̂(ξ , η) � x0 + ξ R(η)x

ŷ(ξ , η) � y0 + ξ R(η) y
(14)

where (x̂ , ŷ) denotes arbitrary point coordinate in the domain,
(x0, y0) and (x, y) denote the coordinate of scaling center and
control points, respectively.

The concept of isoparametric is employed to approximate
the displacement field variableu of the boundary region.

u(ξ , η) � Rn(η)u(ξ ) (15)

where Rn represents the interpolation functions which are
applied to each DOF of an element separately by means of
multiplication with the identity matrixI2×2, defined as
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Fig. 4 The boundary element of
polygon mesh using NURBS
boundary

Fig. 5 The flowchart of
NPSBFEM implementation
under 2D elastostatic problem

Rn � [Ri , p I2×2 Ri+1, p I2×2 Ri+2, p I2×2] (16)

Currently, the PSBFEM has traditionally utilized
Lagrange shape functions up to order 3 [46], with nodes uni-
formly distributed in the local element coordinate system. In
this paper, we only consider the case of order 1 and order 2
for comparison with NURBS. For a 2-noded linear element,
its Lagrange shape functions can be expressed as

NL0 � (1 − η)/2

NL1 � (1 + η)/2
(17)

The corresponding interpolation function is

NL � [NL0 I2×2 NL1 I2×2] (18)

For quadratic element, the corresponding Lagrange shape
functions are

NL0 � η(η − 1)/2

NL1 � (1 + η)(1 − η)

NL2 � η(η + 1)/2

(19)

Fig. 6 Infinite plane with hole

The interpolation function is defined as

NL � [NL0 I2×2 NL1 I2×2 NL2 I2×2] (20)

Subsequently, the stress field of NURBS element area can
be mathematically expressed

σ (ξ , η) � Dε(ξ , η) � D
(
B1u(ξ ), ξ +

1

ξ
B2u(ξ )

)
(21)
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Fig. 7 Polygon mesh generation, a Distmesh-based, b NURBS-boundary-based

Fig. 8 Updated control points

where B1 and B2 denote the correlation between strain and
displacement, which are defined as

B1 � b1Rn

B2 � b2Rn, η
(22)

and

b1(η) � 1

|J |

⎡
⎢⎣ ŷ(η), η 0

0 −x̂(η), η

−x̂(η), η ŷ(η), η

⎤
⎥⎦

b2(η) � 1

|J |

⎡
⎢⎣−ŷ(η) 0

0 x̂(η)
x̂(η) −ŷ(η)

⎤
⎥⎦

(23)

where J is the the Jacobian matrix

J �
[

x̂(η) ŷ(η)
x̂(η), η ŷ(η), η

]
(24)

By substituting the above coordinate transformation into
the virtual work principle, the control partial differential
equation can be transformed into a set of second-order
ordinary differential equations about the scaled boundary
coordinates ξξ , namely, the scaled boundary finite element
equations

E0ξ
2u(ζ ), ξξ +

(
E0 + ET

1 − E1

)
ξu(ξ ), ξ − E2u(ξ ) � 0

(25)

where E0, E1 and E2 can be referred as coefficient matrix,
defined as follows

E0 �
∫
∂	N

B1(η)
TDB1(η)|J |dη +

∫
∂	L

BL
1 (η)

TDBL
1 (η)

∣∣∣J L ∣∣∣dη
E1 �

∫
∂	N

B2(η)
TDB1(η)|J |dη +

∫
∂	L

BL
2 (η)

TDBL
1 (η)

∣∣∣J L ∣∣∣dη
E2 �

∫
∂	N

B2(η)
TDB2(η)|J |dη +

∫
∂	L

BL
2 (η)

TDBL
2 (η)

∣∣∣J L ∣∣∣dη
(26)

where 	N and 	L represent NURBS and line element areas,
respectively.B1

L and B2
L respectively denote the correlation

between strain and displacement of the Lagrange, JL is the
the Jacobian matrix of the Lagrange.

To solve Eq. 15, first transform the equation into a first-
order differential equation

ξ

{
u(ξ )
q(ξ )

}
, ξ

� Z

{
u(ξ )
q(ξ )

}
(27)
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Fig. 9 Deformation diagrams,
a PSBFEM, b NPSBFEM

where the load vector q(ξ ) is

q(ξ) �
(
E0ξu(ξ), ξ + ET

1 u(ξ)
)∣∣

ξ�1 (28)

and the Hamiltonian matrix Z is defined as

Z �
[

−E−1
0 ET

1 E−1
0

E2 − E1E
−1
0 ET

1 E1E
−1
0

]
(29)

By Schur decomposition [47], can be obtained

ZV � ZS (30)

where the Schur matrix S and the transformation V can be
expressed as

S �
[
Sn

Sp

]
, V �

[
V u V u

V q V q

]
(31)

where Sn and Sp are the upper triangular matrices cor-
responding to the negative and positive real parts of the
eigenvalues of Hamiltonian matrix Z; V u, V q and V u, V q

are modal displacements and modal forces in finite and infi-
nite domains respectively. For a finite field problem, a finite
displacement occurs only at the center of scale, u (ξ ) can be
expressed as

u(ξ ) � V uη
−Sn c (32)

where c is the integral constant dependent on the boundary
conditions. Based on node displacement ub � u (ξ � 1), the
integral constant can be expressed as

c � V−1
u ub (33)

The boundary node force is

q(ξ) � V qc (34)

Therefore, the stiffness matrix of the boundary element is

k � V qV−1
u (35)

Furthermore, the stiffness matrix of internal polygon ele-
ments can be directly solved by the PSBFEM.

4.3 The flowchart of NPSBFEM implementation

Firstly, the initial design domain is defined and relevant
parameters are provided, including Delaunay triangulation
related parameters, loads, boundary conditions, material
properties, etc. Secondly, constructing NURBS-boundary-
based polygon mesh through NURBS updating strategy and
mesh generation scheme discussed in Sect. 2. Next, the stiff-
ness matrices are solved using PSBFEM and NPSBFEM
followed by conducting finite element analysis accordingly.
Finally, polygon scaled boundary finite element method
using NURBS boundary is implemented to obtain the
required displacement and stress information. The flowchart
of NPSBFEM implementation is shown in Fig. 5.

5 Examples

In this section, we verify the feasibility of the NURBS-
boundary-based polygon mesh generation scheme using
NURBS boundary and the effectiveness of NPSBFEM
through three examples, including infinite plane with hole,
hook structure and serpentine beam. Computations are per-
formed on aPCwith 12thGen Intel(R)Core (TM) i7–12700F
2.10 GHz CPU and 32 GB RAM.

5.1 Example 1

The primary objective of this example is to investigate the
feasibility of the proposed polygon mesh scheme and NPS-
BFEM, while also providing a comparative demonstration
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Table 1 The updated control
points and the displacement
deformation diagrams

Element
numbers

Control points distribution PSBFEM NPSBFEM

247

517

1197

2314

with traditional polygon mesh and PSBFEM. As shown in
Fig. 6, an infinite plane with hole under remote uniaxial uni-
form tension f � 1 N is employed. The hole with a radius
of 0.4 mm is described by NURBS curve. The control points
(red points) at [0.4 0; 0.4 0.4; 0 0.4; − 0.4 0.4; − 0.4 0; −
0.4 − 0.4; 0 − 0.4; 0.4 − 0.4; 0.4 0] (mm). The knot vector
is [0 0 0 1/4 1/4 2/4 2/4 3/4 3/4 1 1 1], the weights are [1√
2/2 1

√
2/2 1

√
2/2 1

√
2/2 1], and the degree of NURBS

is set to 2. The elastic modulus is specified as 1000Mpa, and
Poisson’s ratio is 0.25.

The utilization of a 2× 2 square instead of an infinite plane
is employed to model the area surrounding the hole. The
exact solution for displacement is specified as the boundary
conditions for all four sides of the square. In polar coordinates
(ρ, θ ) [48], the exact solution for this problem is provided as
follows

ux � f r

8τ

[
β

r
(1 + κ) cos θ +

2r

β
((1 + κ) cos θ + cos 3θ ) − 2r3

β3 cos 3θ

]

uy � f r

8τ

[
β

r
(κ − 3) sin θ +

2r

β
((1 − κ) sin θ + sin 3θ ) − 2r3

β3 sin 3θ

]

(36)

where τ represents the shear modulus, and κ is Kolosov con-
stant defined as

κ �
{

3−ν
1+ν

for plane stress
3 − 4ν for plane strain

(37)

where ν is the Poisson’s ratio and is set to 0.25. And Young’s
modulus is defined as1000 MPa.

When the number of polygon elements is 113, the
Distmesh-based polygonmeshwith linear elements is shown
in Fig. 7a, and Fig. 7b displays the corresponding NURBS-
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Fig. 10 The structure diagrams with nodes/control points under a linear, b quadratic, c NURBS + linear, d NURBS + quadratic

Fig. 11 The comparison curves between wachspress, linear, quadratic, NURBS + linear and NURBS + quadratic of, a time b relative displacement
error norm

Table 2 The degrees of freedom and the processing time under different element numbers

Element
num-
bers

DOFs Time(s)

Wach-
spress

Linear Quad-
ratic

NURBS
+ linear

NURBS
+
quadratic

Wach-
spress

Linear Quad-
ratic

NURBS
+ linear

NURBS +
quadratic

113 560 560 1302 584 1324 0.47 0.51 0.70 0.84 0.89

247 1154 1154 2730 1178 2752 0.52 0.58 0.89 1.16 1.47

517 2314 2314 5554 2338 5576 0.77 0.91 1.59 1.98 2.60

1197 5162 5162 12,544 5186 12,576 1.84 2.18 3.79 4.40 5.94

2314 9786 9786 23,960 9808 23,982 4.81 5.40 9.07 9.83 12.84

boundary-based polygon mesh, which internal elements
adopt linear element.

The feasibility of the proposed polygon mesh generation
scheme with exact boundary description is clearly evident.
While linear segments comprise the boundaries of a polygon

mesh, resulting in rough edges with only C0 continuity at
nodes, the NURBS-boundary-based polygon mesh retains
circular characteristics and exhibits smoothness. Figure 8
demonstrates the updated control points constructed by
the NURBS updating strategy, while solving for polygon
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Table 3 The relative
displacement error norm under
different element numbers

Element
numbers

Wachspress Linear Quadratic NURBS + linear NURBS + quadratic

113 1.47e − 2 9.96e − 3 4.03e − 3 2.65e − 3 4.91e − 4

247 5.47e − 3 3.91e − 3 1.54e − 3 1.27e − 3 3.89e − 4

517 2.51e − 3 1.89e − 3 7.23e − 4 6.0e − 4 1.07e − 4

1197 1.05e − 3 8.30e − 4 3.18e − 4 2.5e − 4 3.52e − 5

2314 4.88e − 4 3.86e − 4 1.40e − 4 1.33e − 4 1.49e − 5

Table 4 The relative von-Mises
stress error norm under different
element numbers

Element Numbers Linear Quadratic NURBS + linear NURBS + quadratic

113 1.65e − 1 1.36e − 1 6.33e − 2 5.49e − 2

247 8.90e − 2 7.62e − 2 5.27e − 2 4.09e − 2

517 5.21e − 2 4.49e − 2 3.78e − 2 2.62e − 2

1197 2.68e − 2 2.40e − 2 1.84e − 2 1.60e − 2

2314 1.60e − 2 1.50e − 2 1.33e − 2 1.06e − 2

elements on the NURBS boundary can be achieved through
our proposed NPSBFEM method. Figure 9 illustrates
the corresponding structural deformation diagrams for
both approaches. It should be noted that the displacement
amplification factor is set to 100.

When the elements numbers are 247, 517, 1197, and
2314 respectively, the displacement deformation diagrams
and updated control points are presented in Table 1.

The results presented in Table 1 demonstrate the capabil-
ity of the NPSBFEM to achieve accurate analysis solutions,

Fig. 12 The relative von-Mises stress error norm comparison curves
between linear, quadratic, NURBS + linear and NURBS + quadratic

regardless of changes in the number of polygons. This vali-
dates its exceptional applicability and consistent generation
of smooth boundaries. Additionally, the distribution of con-
trol points indicates the feasibility of an NURBS updating
strategy, eliminating the need for manual provision of new
NURBS curves. Furthermore, refinement of the mesh leads
to a smoother profile for the inner boundary in PSBFEM.

To verify the accuracy and efficiency of NPSBFEM,
four cases are considered: PSBFEM with linear elements,
PSBFEMwith quadratic elements, NPSBFEMwith NURBS
+ linear elements, and NPSBFEM with NURBS + quadratic
elements. Figure 10 illustrates the corresponding structure
diagrams containing nodes/control points when there are
113 polygon elements.

The relative displacement error norm
Nrde � ∥∥uexa − uh

∥∥/‖uexa‖ is employed to verify the
validity of NPSBFEM, where uexa and uh respectively
represent the analytical solution and the numerical solution.
Using 5 different element numbers to discretize the domain,
the results between the element numbers, the degrees of
freedom (DOFs), and the processing time with Linear,
Quadratic, NURBS + linear and NURBS + quadratic under
the PSBFEM and NPSBFEM are displayed in Table 2. In
addition, the Wachspress interpolation, which is commonly
used for polygon elements solving, is introduced for com-
parison. Table 3 shows the relative displacement error norm
(Nrde) with Wachspress, Linear, Quadratic, NURBS + linear
and NURBS + quadratic under different element numbers.
And Fig. 11a and b exhibit the corresponding comparison
curves of Time and relative displacement error norm.

It is evident that as the number of elements increases,
the processing time for all five cases also increases. The
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Fig. 13 The hook structure, a sizes, loads and constraints, b control points

cases of NURBS + Linear and NURBS + Quadratic exhibit
higher time consumption compared to the cases of linear and
quadratic, primarily due to the slightly more complex mesh
construction involved in the former and the interpolation of
boundaries using NURBS.

From the perspective of accuracy, NPSBFEM shows
superior accuracy with similar degrees of freedom. Combin-
ing Tables 2, 3 and Fig. 11, it is observed that the accuracies
of displacement solutions with NPSBFEM are respectively
improved by72.7%–81.6%, 65.5–73.4% and 74.7–89.3%
compared with Wachspress and PSBFEM, when con-
trastively considering the cases of (Wachspress, NURBS +
linear), (Linear, NURBS + linear), and (Quadratic, NURBS
+ quadratic) under similar degrees of freedom. From the
perspective of efficiency, the NPSBFEM still demonstrates
superior efficiency with similar degrees of freedom. For
the case with 5186 DOFs, NPSBFEM of NURBS + linear
achieves better Nrde than PSBFEM of linear with 9786
DOFs, and the computational time of former is reduced
by 29.8% compared to the latter. Analogously For the case
with 5576 DOFs, NPSBFEM of NURBS + linear achieves
better Nrde than PSBFEM of linear with 23,960 DOFs,

and the computational time of former is reduced by 71.3%
compared to the latter. In other words, NPSBFEM can
achieve higher computational accuracy with fewer DOFs,
which is an accurate and efficient method.

Simultaneously, to investigate the performance benefits of
the proposed approach in relation to stress, the stress analyt-
ical solution is expressed in the polar coordinates as

σx � f

2

(
2 − r2

β2

(
3 cos 2θ +

(
2 − 3r2

β2

)
cos 4θ

))

σy � − f r2

2β2

(
cos 2θ −

(
2 − 3r2

β2

)
cos 4θ

)

τxy � − f r2

2β2

(
sin 2θ +

(
2 − 3r2

β2

)
sin 4θ

)
(38)

In the Cartesian plane coordinate system, the correspond-
ing von-Mises stress is defined as

σe �
√
(σx + σy)2 − 3(σxσy) − τ 2xy) (39)

Subsequently, we construct a relative von-Mises stress
error norm, formulated as Nrve � ∥∥σ exa − σ h

∥∥/‖σ exa‖ ,
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Fig. 14 The polygon mesh of hook structure, a NURBS-boundary-based, b Distmesh-based

where σ exa and σ h respectively represent the analytical solu-
tion and the numerical solution, to further explore the validity
of NPSBFEM.

Furthermore, Table 4 shows the relative von-Mises stress
error norm (Nrve) with Linear, Quadratic, NURBS + linear
and NURBS + quadratic under different element numbers.
The corresponding comparison curves of Nrve are displayed
in Fig. 12.

Combining with Table 4 and Fig. 12, it can also
be observed that NPSBFEM still has a great advantage
over PSBFEM in stress performance. With similar degrees
of freedom, the accuracy of stress solution is improved
by 16.9–61.6% and 29.3–59.6% respectively, when con-
trastively considering the cases of (Linear, NURBS + linear),
and (Quadratic, NURBS + quadratic).

Furthermore, upon comparing the NPSBFEM of NURBS
+ linear with the PSBFEM of quadratic, it becomes appar-
ent that the latter demonstrates inferior performance in terms
of displacement and stress, despite employing quadratic ele-
ments within its interior. This disparity primarily arises from
the inherent limitations associated with Dishmesh’s polygon
mesh construction, which fails to accurately represent curved
boundaries. Conversely, this also underscores the necessity
for developing a novel type of polygonmesh capable of accu-
rately describing domain boundaries.

5.2 Example 2

This example is mainly intended to validate the applicability
of the proposed polygon mesh generation scheme and NPS-
BFEM for complex design domain. The top circular ring of
hook structure internally is fixed, and the semi-arc of bot-
tom part exerts a downward force with a size of 1N. The
size and other information of the design domain are shown
in Fig. 13a. Figure 13b shows the control points’ informa-
tion of the design domain boundary extracted using Rhino
software. The initial information of the NURBS for the hook
structure can be found inAppendixA. The degree ofNURBS
is all set to 2. The elastic modulus is specified as 1000 Mpa,
and Poisson’s ratio is 0.25.

When the number of elements is set to 1037, Fig. 14a
illustrates the NURBS-boundary-based polygon mesh with
control points. For comparison, a commonly used Distmesh-
based polygon mesh with an equivalent number of elements
is introduced, as shown in Fig. 14b. It can be observed
from the figure that the proposed mesh generation scheme
enables complex design domain structures to be accurately
divided into meshes. Due to the introduction of NURBS
curves at the boundary, the description of the design domain
boundary is smoother and more rational compared to con-
ventional polygon mesh generation schemes which employ
linear connections resulting in relatively rough boundaries.
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Fig. 15 The von-Mises stress distribution diagram, a NPSBFEM with 1037 elements, b PSBFEM with 1037 elements, c FEM with 1067 elements,
d FEM with 1950 elements

Additionally, our proposed spline updating scheme facilitates
updates of NURBS and ensures precise alignment between
control points and boundary element nodes for subsequent
accurate solutions.

In order to investigate the applicability of NPSBFEM in
complex design domains, we analyze the von-Mises stress
distribution of the hook structure using NPSBFEM (NURBS
+ linear) and the von-Mises stress obtained from PSBFEM
of linear, as shown in Fig. 15a and b. For comparison, the
von-Mises stress distributions under finite element software
with 1067 and 1950 elements respectively are illustrated
in Fig. 15c and d. The results demonstrate that NPSBFEM
enables stress analysis in complex design domains. The stress
distribution diagram reveals that the maximum stress value
(5.74 MPa) achieved by NPSBFEMwith 1037 elements sur-
passes that of PSBFEM (4.52 MPa) with 1037 elements and

Fig. 16 The serpentine beam and its size information

FEM (5.07 MPa) with 1067 elements, and is closer to the
FEM (6.07 MPa) with 1950 elements. This is attributed
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Fig. 17 Displacement diagrams with mesh distribution, a PSBFEM with 712 elements b NPSBFEM with 712 elements

Fig. 18 Displacement diagrams of finite element software, a 770 elements, b 5509 elements

to the utilization of higher-order elements at the bound-
aries, emphasizing the superior performance of NPSBFEM
in stress analysis.

5.3 Example 3

This example provides a serpentine beam with two circle
holes to measure the accuracy of the NPSBFEM, which
employs NURBS for the boundary and quadratic elements
for the interior. In addition, PSBFEM and finite element soft-
ware are utilized for comparative analysis. It should be noted
that the comparison is predicated on quadratic elements. The
structural design domain and size information are shown in
Fig. 16. The NURBS information for the serpentine beam
with circle holes can be found in Appendix B. The degree of
NURBS is set to 2. The left end of the beam is fixed, and the
right end is applied a downward uniform load of 1 N. The
modulus of elasticity is specified as 1000 MPa and Poisson’s
ratio is set at 0.25.

When the design domain is discrete to 712 polygon ele-
ments under both NPSBFEM and PSBFEM, Fig. 17 displays
the displacement diagramwith mesh distribution. Figure 18a
and b show the displacement diagrams when the number of

elements is 770 and 5509 under the finite element software,
respectively. It can be observed that the displacement dia-
grams obtained through finite element software are relatively
stable, with a maximum displacement of 0.986 mm. In con-
trast, themaximumdisplacement underNPSBFEM(NURBS
+ quadratic) is 0.987 mm, which is closer to 0.986 mm com-
pared to the maximum displacement of 0.978 mm under
PSBFEM (quadratic). Furthermore, Figs. 19 and 20 depict
the corresponding von-Mises stress diagrams to Figs. 17 and
18, respectively. And Table 5 presents the associated val-
ues for maximum displacement and maximum stress. From
the perspective of stress, the maximum stress obtained with
traditional PSBFEM using 712 elements is not as good as
that of the FEM with 770 elements, but the maximum stress
obtained by NPSBFEM with fewer elements (712) exceeds
that of FEM with 770 elements and even approaches the
stress values obtained by FEM with more elements (5509).
The above results indicate thatNPSBFEMcan achieve higher
accuracy with fewer mesh division.
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Fig. 19 Von-Mises stress diagrams, a PSBFEM with 712 elements (b) NPSBFEM with 712 elements

Fig. 20 Von-Mises stress diagrams of finite element software, a 770 elements, and b 5509 elements

Table 5 The maximum
displacement and maximum
stress of PSBFEM, NPSBFEM
and FEM

Methods PSBFEM (712) NPSBFEM (712) FEM (770) FEM (5509)

Maximum displacement (mm) 0.978 0.987 0.9860 0.9861

Maximum stress (MPa) 25.17 32.59 27.87 33.28

6 Conclusions

In this study, a polygon mesh generation scheme using
NURBS boundary is proposed, which enables updating of
NURBS. Simultaneously, a corresponding polygon scaled
boundary finite element method using NURBS boundary,
named NPSBFEM, is presented to solve the NURBS bound-
ary element. The numerical examples demonstrate that the
polygon mesh generation scheme significantly enhances the
quality of a Delaunay-triangulation-based polygon mesh,
leading to improved displacement and stress solutions while
holding great potential for reducing mesh division costs.
Moreover, utilizing NURBS boundaries allows for accurate
representation of complex design domains and offers greater
flexibility for mesh division in intricate geometric shapes.
Furthermore, this method exhibits promising potential in

addressing challenges such as nonlinear problems, fracture
mechanics and dynamic simulations.

Appendix A: NURBS information of hook
structure

The control points of the outer boundary are [38.383236,
45.994334; 63.842778, 32.438415; 64.853493, 3.612564;
65.864209, − 25.213286; 41.41664, − 40.519089;
16.969072, − 55.824893; − 8.519635, − 42.323892;
− 34.008343, − 28.822891; − 35.0812, 0.000713;
− 35.080487, 8.040957; − 27.040243, 8.0406; − 19,
8.040243; − 19, 0; − 19, − 10.570689; − 10.018098,
− 16.144279; − 1.036197, − 21.71787; 8.435549, −
17.024737; 17.907295, − 12.331604; 18.913698, −
1.808933; 19.920102, 8.713739; 11.509645, 15.117151;
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− 21.263493, 40.069425; − 19.990466, 81.240701; −
19.731193, 89.626057; − 13.567317, 95.317109; −
7.403442, 101.00816; 0.975928, 100.598785; 9.355297,
100.18941; 14.93507, 93.924623; 20.514842, 87.659835;
19.955498, 79.289139; 18.384244, 56.637017; 38.429167,
45.969847](mm). The knot vector is [0 0 0 0.106428
0.106428 0.212856 0.212856 0.319283 0.319283 0.425711
0.425711 0.451401 0.451401 0.47709 0.47709 0.516332
0.516332 0.555574 0.555574 0.594816 0.594816 0.634058
0.634058 0.788801 0.788801 0.821116 0.821116 0.85343
0.85343 0.885745 0.885745 0.918059 0.918059 1 1 1], the
weights are [1 0.866205 1 0.866205 1 0.866205 1 0.866205
1 0.707122 1 0.707122 1 0.873862 1 0.873862 1 0.873862
1 0.873862 1 0.88907 1 0.922157 1 0.922157 1 0.922157 1
0.922157 1 0.838919 1].

The control points of the inner boundary are [10, 80.6226;
10, 90.6226; 0, 90.6226; − 10.0, 90.6226; − 10, 80.6226;
− 10, 70.6226;0, 70.6226; 10.0, 70.6226; 10, 80.6226]. The
knot vector is [0 0 0 1/4 1/4 2/4 2/4 3/4 3/4 1 1 1], the weights
are [1

√
2/2 1

√
2/2 1

√
2/2 1

√
2/2 1].

Appendix B: NURBS information
of serpentine beam

The control points of the outer boundary are [0, 5.354249; 0,
3.354249; 0, 1.354249; 1.805665, 1.354249; 3.0, 0; 5.38867,
− 2.708497; 9.0, − 2.708497; 12.61133, − 2.708497; 15.0,
0; 13.5, 1.322876; 12.0, 2.645751; 10.805665, 1.291503;
9.0, 1.291503; 7.194335, 1.291503; 6.0, 2.645751; 3.61133,
5.354249; 0, 5.354249] (mm). The knot vector is [0 0 0
0.103815 0.103815 0.191856 0.191856 0.367938 0.367938
0.544021 0.544021 0.647836 0.647836 0.735877 0.735877
0.823918 0.823918 1 1 1], the weights are [1 1 1 0.911438 1
0.911438 1 0.911438 1 1 1 0.911438 1 0.911438 1 0.911438
1].

The control points of the left circle hole are [4 2.5; 4 1.5;
3 1.5; 2 1.5; 2 2.5; 2 3.5; 3 3.5; 4 3.5; 4 2.5]. The knot vector
is [0 0 0 1/4 1/4 2/4 2/4 3/4 3/4 1 1 1], the weights are [1√
2/2 1

√
2/2 1

√
2/2 1

√
2/2 1].

The control points of the right circle hole are [10 − 0.7;
10 − 1.7; 9 − 1.7; 8 − 1.7; 8 − 0.7; 8 0.3; 9 0.3; 10 0.3; 10
− 0.7]. The knot vector is [0 0 0 1/4 1/4 2/4 2/4 3/4 3/4 1 1
1], the weights are [1

√
2/2 1

√
2/2 1

√
2/2 1

√
2/2 1].
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